From MOS to eMOS
Generalising Model Output Statistics for Full Ensemble Forecasts

Devin Kilminister; Leonard Smith;
Mark Roulston; Christine Ziehmann;
Jochen Bröcker; Liam Clarke

Centre for the Analysis of Timeseries, LSE
Pembroke College, Oxford

December 8, 2004
Introduction

- Model variables are different from real weather variables.
• Model variables are different from real weather variables.
 • Predictions of real weather variables are enhanced by some form of interpretation. Eg, bias correction, MOS, dressing,…

Introduction
• Model variables are different from real weather variables.
 • Predictions of real weather variables are enhanced by some form of interpretation. Eg, bias correction, MOS, dressing,…
• EPS raises another issue: The process generating the ensemble variation is not the same as the process underlying forecast uncertainty.
Introduction

- Model variables are different from real weather variables.
 - Predictions of real weather variables are enhanced by some form of interpretation. Eg, bias correction, MOS, dressing, ...
- EPS raises another issue: The process generating the ensemble variation is not the same as the process underlying forecast uncertainty.
 - Our predictions may also benefit from a more sophisticated interpretation of the ensemble.

We introduce the idea of "ensemble MOS" — a method of interpreting ensembles that conditions the forecast on the joint information present in the whole ensemble, rather than interpreting each ensemble member individually as a "scenario".
• Model variables are different from real weather variables.
 • Predictions of real weather variables are enhanced by some form of interpretation. Eg, bias correction, MOS, dressing,…

• EPS raises another issue: The process generating the ensemble variation is not the same as the process underlying forecast uncertainty.
 • Our predictions may also benefit from a more sophisticated interpretation of the ensemble.

• We introduce the idea of “ensemble MOS” — a method of interpreting ensembles that conditions the forecast on the joint information present in the whole ensemble, rather than interpreting each ensemble member individually as a “scenario”.
Simplified Forecasting Example

Given: *only* the model-wet/dry event
(whether model-precip is more or less than 0mm)

Forecast: probability of precip > 0mm in an actual rain gauge.
(We use the one at WMO10015.)
Simplified Forecasting Example

Given: *only* the model-wet/dry event
(whether model-precip is more or less than 0mm)

Forecast: probability of precip > 0mm in an actual rain gauge.
(We use the one at WMO10015.)

- This precise problem may not be all that interesting to you — later we will predict other thresholds of precipitation, making use of more model-information.
Simplified Forecasting Example

Given: *only* the model-wet/dry event
 (whether model-precip is more or less than 0mm)

Forecast: probability of precip > 0mm in an actual rain gauge.
 (We use the one at WMO10015.)

- This precise problem may not be all that interesting to you — later we will predict other thresholds of precipitation, making use of more model-information.
- We will investigate three different methods of producing the forecast from the ensemble of model-wet/dry events:
Given: *only* the model-wet/dry event
(whether model-precip is more or less than 0mm)

Forecast: probability of precip > 0mm in an actual rain gauge.
(We use the one at WMO10015.)

- This precise problem may not be all that interesting to you — later we will predict other thresholds of precipitation, making use of more model-information.
- We will investigate three different methods of producing the forecast from the ensemble of model-wet/dry events:
 1. Direct interpretation; model-precip and weather-precip are treated as identical. The forecast probability for real-precip is the proportion of model-wet events in the ensemble.
Simplified Forecasting Example

Given: only the model-wet/dry event
(whether model-precip is more or less than 0mm)
Forecast: probability of precip > 0mm in an actual rain gauge.
(We use the one at WMO10015.)

• This precise problem may not be all that interesting to you — later we will predict other thresholds of precipitation, making use of more model-information.

• We will investigate three different methods of producing the forecast from the ensemble of model-wet/dry events:
 1. Direct interpretation
 2. Scenario MOS; a separate forecast probability is made for each ensemble member. These are then combined.
Simplified Forecasting Example

Given: *only* the model-wet/dry event
(whether model-precip is more or less than 0mm)

Forecast: probability of precip > 0mm in an actual rain gauge. (We use the one at WMO10015.)

- This precise problem may not be all that interesting to you — later we will predict other thresholds of precipitation, making use of more model-information.
- We will investigate three different methods of producing the forecast from the ensemble of model-wet/dry events:
 1. Direct interpretation
 2. Scenario MOS
 3. Ensemble MOS (eMOS); the forecast is a function of the joint distribution of the *whole* ensemble.
• Ignorance is $-\log f(x)$, where $f(x)$ is the forecast probability of the outcome x. Smaller ignorance relative to climatology or another forecast is better.
• The confidence intervals are ± 1 bootstrap std. dev.
Ensemble members are interpreted as equally plausible scenarios:

1. For each ensemble member (model-wet/dry) a probability forecast scenario is created. For example:
 - model-wet could correspond to a 50% chance of precip (and, of course, 50% chance of no precip),
 - model-dry corresponds to a 5% chance of precip (and 95% chance of no precip).

 These actual percentages chosen are the parameters of our scenario MOS.

2. The forecast is the average of all the scenarios.

3. The parameters are tuned to minimise the forecast's ignorance on a historical data-set.
Ensemble members are interpreted as equally plausible scenarios:

1. For each ensemble member (model-wet/dry) a probability forecast scenario is created. For example:
 - model-wet could correspond to a 50% chance of precip (and, of course, 50% chance of no precip), while
 - model-dry corresponds to a 5% chance of precip (and 95% chance of no precip).

These actual percentages chosen are the parameters of our scenario MOS.
Simplified Example: Scenario MOS

Ensemble members are interpreted as equally plausible scenarios:

1. For each ensemble member (model-wet/dry) a probability forecast scenario is created. For example:
 - model-wet could correspond to a 50% chance of precip (and, of course, 50% chance of no precip), while
 - model-dry corresponds to a 5% chance of precip (and 95% chance of no precip).
 These actual percentages chosen are the parameters of our scenario MOS.

2. The forecast is the average of all the scenarios.
Ensemble members are interpreted as equally plausible scenarios:

1. For each ensemble member (model-wet/dry) a probability forecast scenario is created. For example:
 - model-wet could correspond to a 50% chance of precip (and, of course, 50% chance of no precip), while
 - model-dry corresponds to a 5% chance of precip (and 95% chance of no precip).

These actual percentages chosen are the parameters of our scenario MOS.

2. The forecast is the average of all the scenarios.

3. The parameters are tuned to minimise the forecast’s ignorance on a historical data-set.
In contrast to the direct interpretation, performance is now better than climatology.

Skill generally improves with shorter lead times.
Idea: ensemble MOS

Any forecast method is a function from the ensemble to the forecast probability:

Scenario MOS:

\[
\text{Ensemble} \xrightarrow{\text{MOS}} \text{Scenarios} \xrightarrow{\text{Combine}} \text{Forecast}
\]
Idea: ensemble MOS

Any forecast method is a function from the ensemble to the forecast probability:

Scenario MOS:

\[
\text{Ensemble} \xrightarrow{\text{MOS}} \text{Scenarios} \xrightarrow{\text{Combine}} \text{Forecast}
\]

eMOS:

\[
\text{Ensemble} \xrightarrow{\text{eMOS}} \text{Forecast}
\]
Idea: ensemble MOS

Any forecast method is a function from the ensemble to the forecast probability:

Scenario MOS:

\[
\text{Ensemble} \xrightarrow{\text{MOS}} \text{Scenarios} \xrightarrow{\text{Combine}} \text{Forecast}
\]

eMOS:

\[
\text{Ensemble} \xrightarrow{\text{eMOS}} \text{Forecast}
\]

- Going through the intermediate stage of a scenario forecast corresponding to each ensemble member can be a strong constraint on the types of forecast functions possible.
Simplified Example: eMOS

- The information present in the ensemble is just the number, \#wet, of “wet” members.
Simplified Example: eMOS

- The information present in the ensemble is just the number, \#wet, of “wet” members.
- Any forecast method is just a function from \#wet to the probability of precip:

\[
\begin{array}{c|c|c|c|c|c|c|c|c|c|c|c}
#Wet & 0 & 10 & 20 & 30 & 40 & 50 \\
\hline
\text{Probability of precip} & 0 & 0.1 & 0.2 & 0.3 & 0.4 & 0.5 \\
\end{array}
\]

Direct interpretation is, essentially, the identity.
Simplified Example: eMOS

- The information present in the ensemble is just the number, #wet, of “wet” members.
- Any forecast method is just a function from #wet to the probability of precip:

Scenario MOS chooses the best linear predictor.
The information present in the ensemble is just the number, \#wet, of “wet” members.

Any forecast method is just a function from \#wet to the probability of precip:

An eMOS method can choose a non-linear predictor.
Simplified Example: eMOS

- The method of analogues can be used to fit the eMOS function:

Predicted probability of precip is the proportion of historical cases with precip at nearby #wet values.
• Interpreting the ensemble as a whole leads to significant improvements in skill over scenarios in the 1–7 day range.
• Interpreting the ensemble as a whole leads to significant improvements in skill over scenarios in the 1–7 day range.
• This is clearly seen by comparing the two models directly rather than to climatology.
Generalising to more complete information

- There is more information in each ensemble member than just whether it was “wet” or “dry”. Could use the *amount* of precip present in each ensemble member.
Generalising to more complete information

- There is more information in each ensemble member than just whether it was “wet” or “dry”. Could use the amount of precip present in each ensemble member.
- But now the ensemble cannot be described by a single quantity like #wet. (But it may contain more information.) Instead, we now have a distribution of model-precip.
Generalising to more complete information

• There is more information in each ensemble member than just whether it was “wet” or “dry”. Could use the amount of precip present in each ensemble member.

• But now the ensemble cannot be described by a single quantity like \#wet. (But it may contain more information.) Instead, we now have a distribution of model-precip.

• Can summarise the distribution by (say) its 10\%, 50\%, and 90\% quantiles (p_{10}, p_{50}, and p_{90}).
Generalising to more complete information

- There is more information in each ensemble member than just whether it was “wet” or “dry”. Could use the *amount* of precip present in each ensemble member.

- But now the ensemble cannot be described by a single quantity like #wet. (But it may contain more information.) Instead, we now have a *distribution* of model-precip.

- Can summarise the distribution by (say) its 10%, 50%, and 90% quantiles (p_{10}, p_{50}, and p_{90}). And fit a function from this information into the probability of real precipitation:

 \[(p_{10}, p_{50}, p_{90}) \mapsto \text{probability of real precip}\]
Generalising to more complete information

Using the extra information results in large improvement at shorter lead-times.
Generalising to more complete information

- Using the extra information results in large improvement at shorter lead-times.
Example: Predicting other thresholds

- As the threshold increases, skill over climatology decreases.
- This might be due to the small number of examples of >10 mm precip in the training period — only about 6 occur.
Example: Predicting other thresholds

As the threshold increases, skill over climatology decreases.

This might be due to the small number of examples of >10 mm precip in the training period — only about 6 occur.
Example: Predicting other thresholds

- As the threshold increases, skill over climatology decreases.

- This might be due to the small number of examples of >10 mm precip in the training period — only about 6 occur.
Example: Predicting other thresholds

- As the threshold increases, skill over climatology decreases.

More information on the diagram:
- The chart compares quantile eMOS vs. Climatology for precipitation above 2mm.
- The y-axis represents ignorance in bits, ranging from -0.6 to 0.
- The x-axis represents leadtime in days, ranging from 0 to 10.

The chart shows a downward trend, indicating a decrease in skill over time.
Example: Predicting other thresholds

- As the threshold increases, skill over climatology decreases.
Example: Predicting other thresholds

- As the threshold increases, skill over climatology decreases.
Example: Predicting other thresholds

- As the threshold increases, skill over climatology decreases.
- This might be due to the small number of examples of > 10 mm precip in the training period — only about 6 occur.
Summary and Future Directions

- There is information in ensembles that can be extracted by considering their *joint* information rather than as just scenarios.
Summary and Future Directions

- There is information in ensembles that can be extracted by considering their *joint* information rather than as just scenarios.
- eMOS looks for general relationships between forecast information and verification.
 - Model-variables are not weather-variables.
 - Ensemble-spread is not forecast-uncertainty.
Summary and Future Directions

- There is information in ensembles that can be extracted by considering their *joint* information rather than as just scenarios.
- eMOS looks for general relationships between forecast information and verification.
 - Model-variables are not weather-variables.
 - Ensemble-spread is not forecast-uncertainty.
- Forecast-verification archives of sufficient size are essential.
Summary and Future Directions

• There is information in ensembles that can be extracted by considering their *joint* information rather than as just scenarios.
• eMOS looks for general relationships between forecast information and verification.
 • Model-variables are not weather-variables.
 • Ensemble-spread is not forecast-uncertainty.
• Forecast-verification archives of sufficient size are essential.
• eMOS makes no strong assumptions about the “meaning” of the information it uses — it can be easily extended to combine information from different sources.