Driftsonde System Overview

Terry Hock, Hal Cole, Charlie Martin

National Center for Atmospheric Research
Earth Observing Lab

December 7, 2004

First THORPEX International Science Symposium
Montreal, Canada
Predictability research suggests that additional in-situ measurements in “Sensitive Regions” will improve predictions of high-impact weather events, these regions are often cloudy.

Sensitive regions for November 2001 based on 30-day average of the NRL NOGAPS model (color coded). The contours are the 500 hPa height field. Courtesy of Alan Thorpe, Rolf Langland, and Melvyn Shapiro from THORPEX planning presentations.
Driftsonde Motivation

Satellite based measurements:
- Infrared techniques have limits due to opaque cloud cover
- Microwave techniques have relatively course vertical resolution
- Horizontal winds are a challenge in deep cloud layers.

Driftsonde Goal
Cost-effective observing system to fill critical gaps in data coverage over oceanic and remote artic and continental regions with high vertical resolution atmospheric profiles of:
- Wind
- Temperature
- Humidity
made by GPS Dropsondes.

New Satellite-based techniques (constituent track winds, water vapor tracking, Doppler lidar measurements in clear air) clearly have a need for in-situ measurements to evaluate and calibrate these satellite systems.
Drifftsonde Operation

System requirements
- Provide Soundings with Global coverage
- Cost effective (Complete system is expendable)
- Flight duration 4-6 days
- Altitude 100-50 mb
- Deploy Dropsondes on command (Targeting) or automatically (Timed)
- Payload of minimum 20 dropsondes (4/day for 5 days)
- Real-time position tracking - ATC monitoring

Engineering Challenges
- Cost, disposable sounding system
- **Reliable** global satellite communications (Orbcomm, Globalstar, Iridium)
- Harsh environment, temperature extremes (diurnal variations in radiation)
- Altitude control [zero-pressure balloon – ballasting algorithms]
- Integration issues (GPS, Iridium, Sonde Transmitters, Receivers)
- Flight train launch

© 2004 Copyright University Corporation for Atmospheric Research
Driftsonde System

Zero-pressure Balloon
(20-40 sonde capacity)

Gondola

Iridium LEO Satellite

6 hours between drops

~16 km

50-100 mb

© 2004 Copyright University Corporation for Atmospheric Research
Simulated Driftsonde sounding coverage at one assimilation time after 5 days of deployment from launch sites along the Asian Pacific rim

Initial Launch Time:
00 UTC 06 Feb 1999
13 launch sites

Drift Level: 100 mb

Deployment Interval:
12hr

Coverage at: 00UTC
11 Feb 1999

Analysis Dr. Rolf Langland, Dr. Melvyn Shapiro
Driftsonde Components

Flight train

1. Low cost polyethylene zero-pressure balloon (365 m³ & 2,265 m³)
2. Parachute
3. Radar reflector
4. Aircraft Transponder
5. Gondola
 - Embedded Computer
 - GPS Navigation System
 - Flight level PTH sensor
 - Ballast System
 - Lithium battery power system
 - Iridium, global coverage 2-way satellite system
 - Dropsondes

© 2004 Copyright University Corporation for Atmospheric Research
Driftsonde Flights
Tillamook, OR

<table>
<thead>
<tr>
<th>Flt. No.</th>
<th>Date</th>
<th>Duration</th>
<th>Altitude</th>
<th>Objectives</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2/28/02</td>
<td>4 ¾ hrs</td>
<td>16.9 km</td>
<td>Engineering Tests; Orbcomm communications, thermal control & evaluation, altitude control manual ballasting</td>
</tr>
<tr>
<td>2</td>
<td>11/14/02</td>
<td>5 hrs</td>
<td>16.4 km</td>
<td>Same as Flight 1</td>
</tr>
<tr>
<td>3</td>
<td>2/10/03</td>
<td>22 ½ hrs</td>
<td>16.4 km</td>
<td>Engineering Tests; Iridium communications, Drop sondes (data system on ground), automatic altitude control, diurnal test</td>
</tr>
<tr>
<td>4</td>
<td>8/19/03</td>
<td>11 ½ hrs</td>
<td>17.6 km</td>
<td>First test flight of complete sounding system in gondola, dropped 4 sondes</td>
</tr>
<tr>
<td>5</td>
<td>9/2/03</td>
<td>63 ½ hrs</td>
<td>24 km</td>
<td>Over the ocean test, dropped 8 sondes, all systems worked well</td>
</tr>
</tbody>
</table>
Flight #5 9/2/03

ALTITUDE AND BALLAST DUMPED VS TIME

© 2004 Copyright University Corporation for Atmospheric Research
Driftsonde Future Efforts

Engineering
- Integrate Vaisala Radiosondes
- Super Pressure Balloon (eliminates ballasting & reduces balloon size)
- Develop ground operations software for command and tracking
- Small low cost Wind & Temperature only sonde
- Sonde payload up to 50 sondes
Miniature In-situ Sounding Technology (MIST Sonde)

GPS Wind & Temperature only sonde (credit card size)

Supported by NOAA/THORPEX
Driftsonde Future Efforts

Possible Field Deployments

- **AMMA 2006** Teaming with CNES launching from Chad
 - SOP 2 Zero-pressure balloon
 - SOP 3 CNES Super-pressure balloon 10-day flights, 40-50 sondes

- **International Polar Year**
Proposed Driftsonde Operation on French CNES Stratospheric Balloons for 2006

Trajectories: 1 balloon launch per day for 1 Sept – 15 Sept 2000

10-day duration (can go up to 20);

50 sondes per balloon